

Islamic Organization for Food Security anisation Islamique pour la Sécurité Alimentain

المنظمة الاسلامية للأمن الغذاني

ISLAMIC ORGANIZATION FOR FOOD SECURITY

Dr. Suat ATAN

IOFS System Supervisor Data Scientist

Network Analysis and Visualization Methods for Food Security and Trade

WEBSITE IOFS.ORG.KZ

PHONE NUMBER +7 (7172) 99-99-00

ADDRESS INFO@IOFS.ORG.KZ

Network Analysis and Visualization Methods for Food Security and Trade

- What is network analysis?
- Why network analysis?
- Implementation on OIC commodity trade

What is network analysis?

Introduction to Network Analysis

- Network analysis is a powerful tool for studying relationships and interactions between entities.
- Python provides various libraries, such as NetworkX and Gephi, to perform network analysis tasks.
- In this presentation, we will explore the implementation of network analysis for international food trade.

Node	Degree
Ahmet	4
Özgür	2
İbrahim	3
Ferhat	1
Suat	2

Nodes can represent countries, products, or other **entities**, while edges represent relationships or interactions. By analyzing the structure and properties of networks, **we can uncover** valuable insights about complex - systems.

Node	Degree
Ahmet	4
Özgür	2
İbrahim	3
Ferhat	1
Suat	2

Degree: Number of connection

Degree and degree distribution

Balanced Degree Distribution

Why network analysis?

Importance of network analysis

Network analysis is a powerful tool for understanding the **structure** and **function** of complex systems.

It allows researchers to identify **patterns and trends in the relationships between the entities** in a network and to understand how these relationships influence the behaviour of the system as a whole.

Network analysis can be used to identify **key players in a network**, understand how information flows through a network, and to identify potential bottlenecks or vulnerabilities in a network.

- In business, network analysis can be used to identify key customers, suppliers, and partners. It can also be used to understand how information flows through an organization and to identify potential bottlenecks.
- In healthcare, network analysis can be used to identify patients who are at risk for certain diseases, to track the spread of disease, and to identify potential sources of infection.
- In government, network analysis can be used to understand how government agencies interact with each other, to identify potential problems with government programs, and to make better decisions about how to allocate resources.

- risk of exit
- If talented, this presents a risk

The density of a network is simply the proportion of all possible ties that are actually present.

Number of all possible connections: P Number of <mark>actual</mark> connections: A n: Number of nodes Density: D

P = n(n-1)/2

from Research Methods and Design in Sport Management by Damon P. S. Andrew, Paul Mark Pedersen, Chad D. McEvoy Human Kinetics, 2019

Number of all possible connections: P Number of actual connections: A n: Number of nodes Density: D

P = n(n-1)/2

Nodes (n): 3 Potential Connections: 3 (3*2/2) Actual Connections: 3 Network Density: 100% (3/3)

Nodes (n): 3 Potential Connections: 3 (3*2/2) Actual Connections: 2 Network Density: 66.7% (2/3)

01.csv

https://github.com/suatatan/network-analysis-lecture

Real-life application with R

Data & Network Collections. Find and interactively VISUALIZE and EXPLORE hundreds of network data

R ANIMAL SOCIAL NETWORKS	816	TINTERACTION NETWORKS	29	COMPUTING	11
BIOLOGICAL NETWORKS	37	X INFRASTRUCTURE NETWORKS	8	SOCIAL NETWORKS	77
BRAIN NETWORKS	116	SABELED NETWORKS	105	FACEBOOK NETWORKS	114
COLLABORATION NETWORKS	19	MASSIVE NETWORK DATA	21	TECHNOLOGICAL NETWORKS	12
	646	S MISCELLANEOUS NETWORKS	2668	WEB GRAPHS	36
55 CITATION NETWORKS	4	POWER NETWORKS	8	O DYNAMIC NETWORKS	115
ECOLOGY NETWORKS	6	PROXIMITY NETWORKS	13	C TEMPORAL REACHABILITY	38
\$ ECONOMIC NETWORKS	16	🖋 GENERATED GRAPHS	221	m BHOSLIB	36
EMAIL NETWORKS	6	RECOMMENDATION NETWORKS	36	ti dimacs	78
GRAPH 500	8	ROAD NETWORKS	15	€ DIMACS10	84
HETEROGENEOUS NETWORKS	15	Y RETWEET NETWORKS	34	I NON-RELATIONAL ML DATA	211

http://networkrepository.com/

Network Analysis -Dr. Suat ATAN (IOFS)

https://github.com/suatatan/network-analysis-lecture

Real World Examples

Network Analysis Application on Finance

Şirket Ağları Üzerinden Sahiplik İlişkilerine Yönelik Stratejilerin Belirlenmesi

Determining Strategies for Ownership Relations by Business Networks

Suat ATAN⁽¹⁾, Çiğdem BASKICI⁽²⁾, Yavuz ERCİL⁽³⁾

ÖZ: Çalışmada şirketlerin sahiplik ilişkilerine yönelik stratejilerinin ortaya çıkarılması amaçlanmaktadır. Bu doğrultuda Borsa İstanbul'da (BIST) işlem gören 515 şirketin 1 Ocak-31 Aralık 2017 yılına ait pay sahipliği bilgileri kullanılmıştır. Bu bilgiler ışığında şirketlerin doğrudan ve dolaylı sahiplik oranlarının hesaplanabileceği 2228 şirket ve 2058 ilişkiden oluşan bir ağ oluşurulmuştur. Ağ üzerinden yapılan hesaplamalar sonucunda 298 şirketin yalnızca doğrudan sahiplik, 63 şirketin ise hem doğrudan hem de dolaylı sahiplik kurdukları tespit edilmiştir. Doğrudan ve dolaylı sahiplik kuran şirketler içerisinde özellikle Koç Holding'in dolaylı sahiplik oranının doğrudan sahiplik oranından daha yüksek olduğu ortaya çıkmıştır. Net Holding ve Doğan Şirketler Grubu çok belirgin bir biçimde doğrudan sahipliği dolaylı sahipliğe tercih etmektedir.

Anahtar Kelimeler: Şirket stratejisi, Ağ perspektifi, Sahiplik ilişkileri, Piramit yapılar

Abstract: The aim of the study is to reveal business strategies for ownership relations. Accordingly, the shareholding information of 515 companies listing in Borsa Istanbul (BIST) for the period January 1 - December 31, 2017 has been used. In the light of this information, a network of 2228 companies and 2058 relations was established in which direct and indirect ownership rates of companies can be calculated. As a result of the calculations made over the network, it was determined that only 298 companies have direct ownership ratio of Koç Holding was found to be higher than its direct ownership ratio. Net Holding and Dogan Group prefer distinctly direct ownership rather than indirect ownership.

Keywords: Business strategy, Network perspective, Ownership relations, Pyramidal structure

Şekil 1. Doğrudan ve Dolaylı İlişkiler

Network Analysis -Dr. Suat ATAN (IOFS)

https://github.com/suatatan/network-analysis-lecture

Real-life application with R

https://rpubs.com/suatatan/tiata-2017

Network Analysis -Dr. Suat ATAN (IOFS)

https://github.com/suatatan/network-analysis-lecture

Real-life application with R

https://suatatan.shinyapps.io/healthoscope/

https://github.com/suatatan/network-analysis-lecture

R

Source: FAO Data

Visualization: NetworkX+Python+ Gephi

Rice Export

Source: FAO Data

Visualization: NetworkX+Python

Source: FAO Data

Visualization: NetworkX+Python

Thanks

Dr. Suat ATAN <u>suat@iofs.org.kz</u>

suatatan.wordpress.com