

DATA WAREHOUSE

31.03.2014 (Muscat, Oman)

OUTLINE

Users Problems and necessity for Data Warehouse

BI Definition and Components

Data Warehousing Concepts

DW Goals and Objectives

OLAP and OLTP terms

Data Warehouse vs: Operational DBMS

Datamarts methodology

Explanation of Star Schema and Snowflake Schema

DMQL (Data Mining Query Language)

OLAP Functions

INTRODUCTION

There are 2 types of users: Operational users and Decision-Maker users

Operational users use local data while decision-makers use historical data

Database design is changed if data is used for take decision.

Data Warehousing is used for take decisions

Data Warehouses captures data different operational sources

Data Warehouses contain historical data

Operational Data:

local data gets frequent updates and queries specific queries are needed

Operational user

Historical Data:

"tells" about something
Very infrequent updates
Integrated data
Analytical queries that require huge amounts of aggregation
Query Performance is crucial

Decision maker

Example OLTP queries:

What is the salary of Mr. Johnson? (point query)

What is address and phone number of Mr. Johnson? (point query)

How many employees have received an 'excellent' credential in the last appraisal?

Example OLAP queries:

Is there a correlation between the geographical location of a company and profit of the company?

How is the age of the employee effect their performance?

Is gender of a staff effect the performance?

Data Problems and necessity for Data Warehouse

Without DW:

Data is everywhere and hard to manage

Same data is exist at different places

Data inconsistency

It is hard to deploy new data

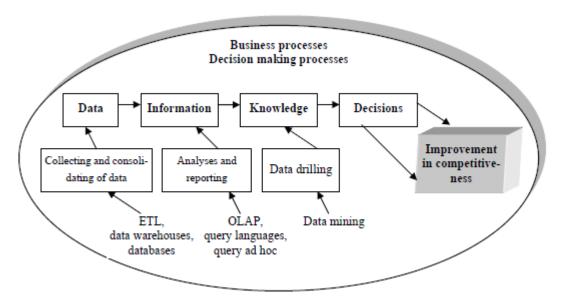
Data is so complex and detailed

Data can not be analysed

There isn't time series

DECISION SUPPORT SYSTEM and The Origin of BUSINESS INTELLIGENCE

DECISION SUPPORT SYSTEM is a general name of any system to support decision-makers in the decision process.


DSS is the origin of the Business Intelligence system

Business intelligence is designed to support the process of decision-making

BI Definition

Business intelligence system – A set of integrated tools, technologies and programmed products used to collect, integrate, analyze, and make data (Koronios & Yeoh, 2010).

The Role of BI in decision making (Olszak & Ziemba, 2007, Figure 2, p.137)

Business Intelligence Systems:

Includes all technologies for gathering and analysing data

Provide the input to strategic and tactical decions at senior managerial levels

Managerial level don't need daily information, they need historical, strategical data.

Companies invest large amount of money to BI technologies

Query driven Approach and Data Warehouse based

Disadvantages of Query driven Approach:

- Data is up to date, slowly queries because of transactions
- Historical data doesn't exist
- •The Query Driven Approach needs complex integration and filtering processes, aggregation. So it is slow.
- •This approach is very inefficient
- •This approach is very expensive for frequent queries
- Competes with local processing at sources

Data Warehousing Approach


- •This is the approach commonly used in BI systems.
- •In this approach; the information from multiple heterogeneous sources is integrated in advance and stored in a warehouse.
- •There is another database other than running database.
- •The data in the database is stored in a data warehouse in periodically.
- •Users don't access database directly, they access Data Warehouse for querying.
- •This approach provides high performance.
- Data Warehouse also contains historical data

BI Components

- Data Warehouse (also called as OLAP systems)
- OLAP Cubes
- Dashboards
- ETL (Extract, Transform, Load)
- Data Mining

- Data Mining
- Take decision

Decision-makers use dashboard that contains report, analysis, chart, maps, etc.

Some Definitions of Data Warehousing

Data warehouse -

A subject oriented, collection of data used to support decision making in organizations (Anderson et al., 2008).

Data warehousing - A systematic approach to collecting relevant business in order to organize

and validate the data so that it can be analyzed to support business decision making (Cody et al., 2002).

A Data Warehouse is a subject-oriented, integrated, time-varying, non-volatile collection of data that is used primarily in organizational decision making."

-- W.H. Inmon, Building the Data Warehouse, 1992

A Data Warehouse is...

Subject-oriented, Organized by subject, not by application

Used for analysis, data mining

Optimized differently from transaction-oriented database

Single repository of information

Data Warehousing involves data cleaning, data integration and data

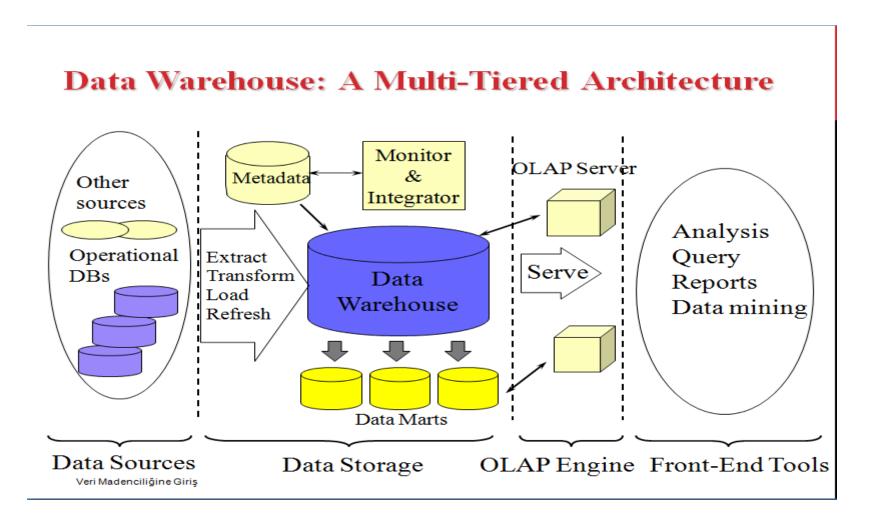
consolidation

Supports analytical reporting, ad-hoc queries and decision making

User interface aimed at executive

Data Marts

A data mart is a subset of the data warehouse. This data is specific to a particular group. Data warehouses are collection of "data marts".


Data marts are also seen as small warehouses for OLAP activities It deals with specific information. For example, although a data warehouse includes the all data of an organization, a data mart includes the data of a department. The data mart is organized for regarding people. So these people don't need to understand all the data, it is

Management and autherization would be easierr when using data marts.

sufficient to understand the regarding data mart.

Generic Warehouse Architecture

Differences Between Operational Systems and Data Warehousing Systems

An operational database stores information about the activities of an organization

The purpose of an operational system is providing online querying and processing, daily routines

Operational systems are also called as **OLTP** (Online Transactional Processing)

Data Warehouses help users to data analyze and make decisions

Warehouse is a Specialized DB Data Warehousing Systems are also called as **OLAP** (Online Analytical Processing)

OLAP vs OLTP

	OLTP	OLAP					
users	clerk, IT professional	knowledge worker					
function	day to day operations	decision support					
DB design	application-oriented (ER)	subject-oriented (star schema)					
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated					
usage	repetitive	ad-hoc					
access	read/write index/hash on prim. key	lots of scans					
unit of work	short, simple transaction	complex query					
# records accessed	tens	millions					
#users	thousands	hundreds					
DB size	100MB-GB	100GB-TB					
metric	transaction throughput	query throughput, response					

INFORMATION TECHNOLOGIES DEPARTMENT 19

Types of OLAP Servers

- •Multidimensional OLAP (MOLAP) : array-based multidimensional storage
- •Relational OLAP(ROLAP): Uses Relational Database. Includes aggregation, additional tools and services.
- •Hybrid OLAP (HOLAP) : Both MOLAP and ROLAP
- Specialized SQL Servers

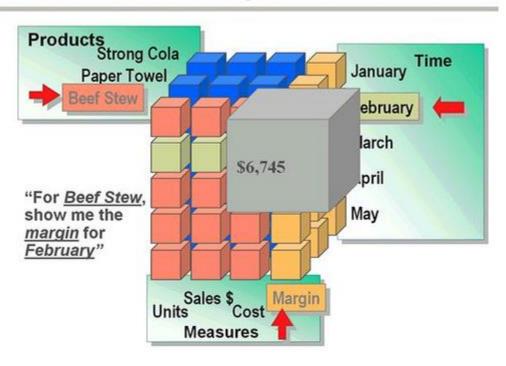
OLAP CUBES

Data cube help us to represent data in multiple dimensions. The data cube is defined by dimensions and facts. The dimensions are the entities with respect to which an enterprise keeps the records.

OLAP cube is the main object of the OLAP. This cube is a <u>multi-dimensional</u> cube. The components of a cube are:

<u>fact table, dimension tables and measures.</u>

The cube concept is used to understand multi-dimensional model better. Data cubes are used for people that don't have advanced database knowledge. The cubes are capable of analyzing data from multiple dimensions.


Relational databases are not suitable for very large data. So, OLAP cube is created from these data for an easy analyze.

If there are more than 3 dimensions in a cube, it is called hypercube.

OLAP CUBE Example

OLAP - An Example

INFORMATION TECHNOLOGIES DEPARTMENT 22

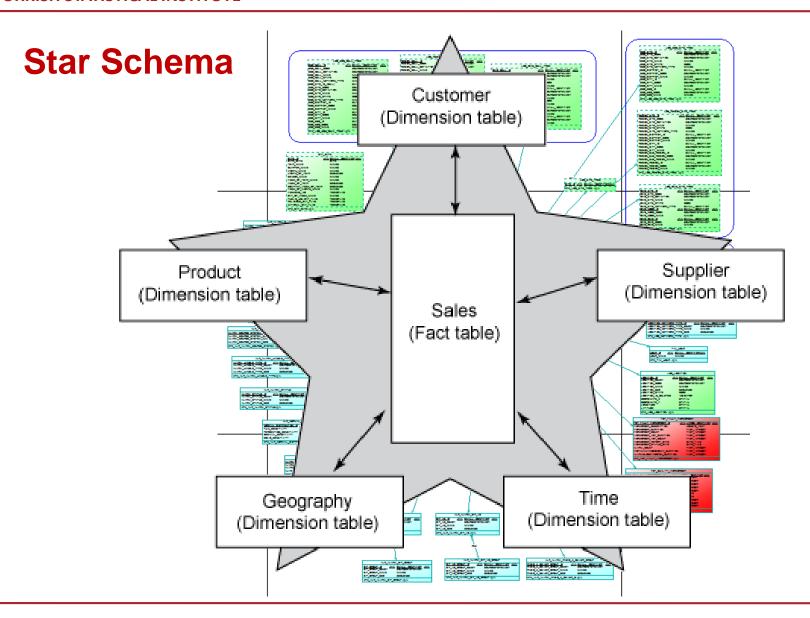
(Modelling Types) Schema Types in Data Warehousing

Some modelling types:

Star Schema

Flat schema

Terraced Schema


Snowflake Schema

Star Cluster Schema

Fact Constellation Schema, ...

Data normalization in DW is not as important as OLTP systems

INFORMATION TECHNOLOGIES DEPARTMENT

Charecteristics of Fact and Dimension Tables

Fact table:

- Contains numeric values that called measurements
- Contains huge size of data
- Expand fast and quickly
- •Includes stable, derived, summarized, aggregated data
- Have foreign key relation with dimension tables

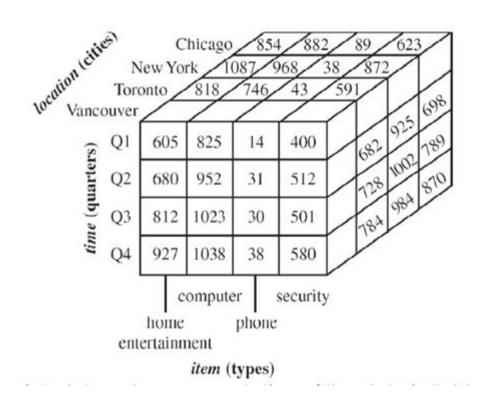
Dimension tables:

- Are Reference tables
- •Generally includes text type data that users want to see
- Generally includes static data
- Data size is low

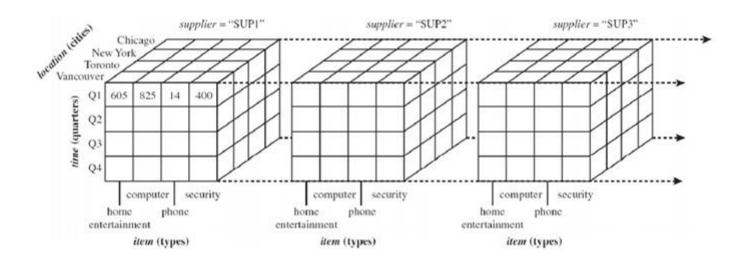
time (quarter)	item (type)								
dimensions	home entertainment	computer	phone	security					
Q1	605	825	14	400					
Q2	680	952	31	512					
Q3	812	1023	30	501					
Q4	927	1038	38	580					

Table 1: 2-D view of sales data according to the dimensions time and item, where location is 'Vancouver'.

The mesure displayed is dollar in thousand


Facts (numerical measures)

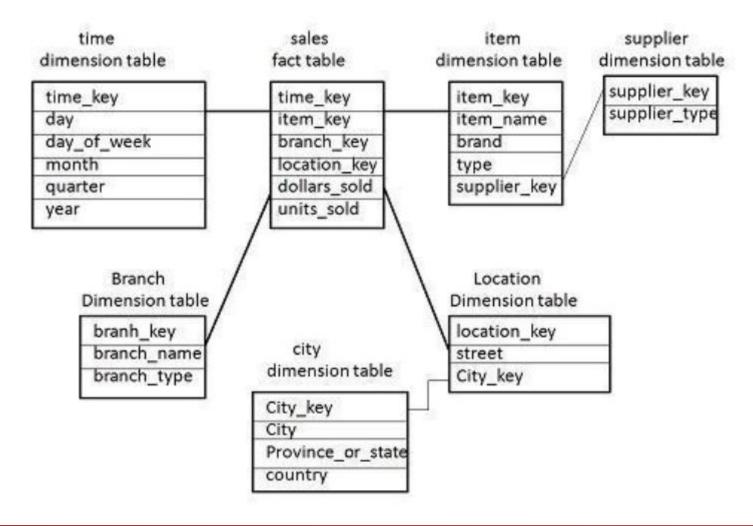
	locatio	n = "Ch	icago"		location = "New York"			location = "Toronto"				location = "Vancouver"				
t	item				item			item				item				
i m e	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.	home ent.	comp.	phone	sec.
Q1 Q2 Q3 Q4	854 943 1032 1129	882 890 924 992	89 64 59 63	623 698 789 870	1087 1130 1034 1142	968 1024 1048 1091	38 41 45 54	872 925 1002 984	818 894 940 978	746 769 795 864	43 52 58 59	591 682 728 784	605 680 812 927	825 952 1023 1038	14 31 30 38	400 512 501 580


Table 2: 3-D view of sales data according to the dimensions time, item and location. The measure displayed in dollar-sold in thousand

3-D data cube representation of the data in table 2

4-D data cube representation, according to the dimensions time, item, location and supplier

Snowflake Schema


- •There is only one fact table
- Some dimension tables are normalized
- Due to normalization,

redundancy is reduced

therefore it becomes easy to maintain and save storage space

Snowflake Schema Example

INFORMATION TECHNOLOGIES DEPARTMENT 31

Data Mining Query Language (DMQL)

DMQL is a SQL based language. First, it is developed for data mining process.

But, It can be also used for describing data warehouses elements.

SYNTAX FOR CUBE DEFINITION

define cube < cube_name > [< dimension-list >]: < measure_list >

SYNTAX FOR DIMENSION DEFINITION

define dimension < dimension_name > as (< attribute_or_dimension_list >)

DMQL (Data Mining Query Language) Examples

Star Schema of Sales Cube Definitons:

define cube sales star [time, item, branch, location]:

dollars sold = sum(sales in dollars),

define dimension time as (time key, day, month, year)

define dimension item as (item key, item name)

define dimension location as (location key, street, postal code, city)

The Conversion of a Relational Database into a Multidimensional Database

- •Find Subjects and Data Marts
- Find all dimensions that exist but are hidden in a relational database schema
- Knowledge (measurements)

OLAP OPERATIONS

- •Roll-up: Performs aggregation on a data cube
- Drill-down: reverse of the roll-up
- •Slice: Performs selection on a dimension of a cube
- •Dice: Performs selectson on two or more dimensions
- •Pivot (rotate) : It rotates data axes

SUMMARY

- OLAP vs OLTP
- •BI components are DW, OLAP, Cubes, Dashboards, ETL and Data Mining
- •DW is subject oriented data and used in Decision Support Systems
- DW is also called OLAP
- •DW includes time dimension, historical data
- Querying and analysing data is easy on DW system
- Generally managers use DW to query
- •Star-Schema structure is used in DW at most (fact, dimensions, measures)

Thank You & Any Question?