

The Agent of Trustworthy Statistical Data For All

Premature Mortality

BPS-Statistics Indonesia

Islamabad, Pakistan 18-20 September, 2017

Premature Mortality

- Definition: Premature mortality is defined as deaths occurring before age 70.
- The premature mortality rate (PMR) is the number of deaths/100,000 persons, age-adjusted to the 2000 US Standard population.

STATISTICS INDONESIA

PMR : Strenghts

- The PMR is considered an excellent, single measure that reflects the health status of a population, and the need for systematic public health approaches to health promotion and disease prevention.
- PMR analyses make clear that community health status is related to many factors.
- Health care is certainly one of these factors, but not the only factor.

STATISTICS INDONESIA

PMR : Strenghts

- As our analyses make clear, the PMR may be related to socioeconomic status and its correlates: potential issues such as environmental conditions, housing, education, stress, higher rates of smoking, substance abuse, violence, obesity, and lack of access to care.
- However, there are other possible reasons for high PMRs: specific subpopulations of younger persons at risk such as HIV/AIDS in Province town; increased motor vehicle deaths in rural areas; heart attack deaths in persons 45-64 in suburbia, etc.).

PMR Limitation

- it does not identify specific reasons why in some areas may be high or low;
- mortality might not be a good measure of important public health issues (e.g. arthritis, poor housing, etc.)

PMR : Usage

- Ultimately, the PMR is a useful planning tool to begin discussions that allow policy makers, community advocates, public health professionals, and cities and towns to consider more effective and cost efficient approaches to improving the quality of life and health of the public.
- Furthermore, the PMR is helpful because it moves us away from considering only individual diseases, and directs us towards considering the overall health of our communities.

PMR : Calculating

- There are three pieces of data that you will need in order to calculate the PMR.
- They are mortality data, population data and "standard" population data.

The following are steps needed to calculate the premature mortality rate.

- The ensuing example will look at the number of deaths to "A" Country residents under the age of 75 during the years 2004-2006.
- The standard population used in the example was the year 2000 United States standard million population age distribution.

PMR : Calculating

- We will use a method of adjusting called "direct standardization."
- It consists of applying specific crude rates to a standard population.
- The method serves the purpose of summarizing a set of specific rates independently of the characteristics of the population being studied.
- (Note: We will use the standard population up to the age group 65-74 for the calculation of premature mortality rates.)

 Using the same age groups as the 2000 U.S. standard population distribution (<1, 1-4, 5-14, up to age group 65-74), record the number of deaths to "A" residents under the age of 75 for the period 2004-2006.

Ages	Deaths
<1	294
1-4	44
5-14	59
15-24	385
25-34	481
35-44	1,067
45-54	2,640
55-64	3,937
65-74	6,415
TOTAL	15,322

• **Step 2**—List the population of "A" Country residents under the age of 75 for 2004-2006 for each of the age groups.

Ages	Pop
<1	38,713
1-4	161,039
5-14	442,149
15-24	505,121
25-34	426,961
35-44	516,469
45-54	558,476
55-64	416,442
65-74	310,068
TOTAL	3,375,438

 Compute age-specific rates (crude rates) for each of the agegroups using data from Steps 1 and 2. (Deaths / Pop = Age-Specific Rate).

Ages	Deaths	Рор	Age- Specific Rate
<1	294	38,713	0.0076
1-4	44	161,039	0.0003
5-14	59	442,149	0.0001
15-24	385	505,121	0.0008
25-34	481	426,961	0.0011
35-44	1,067	516,469	0.0021
45-54	2,640	558,476	0.0047
55-64	3,937	416,442	0.0095
65-74	6,415	310,068	0.0207

List the "standard" population as the next column in the table.

(Remember that the standard used in this example was the 2000 U.S. standard million population distribution by age.)

 Multiply each age-specific rate by the corresponding "standard" population. The result is an artificial index displaying the number of deaths each age group would have experienced if the agespecific death rates had actually occurred to the same age group totals found within the "standard" population.

Ages	Deaths	Рор	Age- Specific Rate	Std Population	Index of Expected Deaths
<1	294	38,713	0.0076	13,818	104.9
1-4	44	161,039	0.0003	55,317	15.1
5-14	59	442,149	0.0001	145,565	19.4
15-24	385	505,121	0.0008	138,647	105.7
25-34	481	426,961	0.0011	135,573	152.7
35-44	1,067	516,469	0.0021	162,613	336.0
45-54	2,640	558,476	0.0047	134,834	637.4
55-64	3,937	416,442	0.0095	87,247	824.8
65-74	6,415	310,068	0.0207	66,037	1,366.2

• Sum the "standard" population column, as well as the index of expected deaths column

Std Population	Index of Expected Deaths
13,818	104.9
55,317	15.1
145,565	19.4
138,647	105.7
135,573	152.7
162,613	336.0
134,834	637.4
87,247	824.8
66,037	1,366.2
939,651	3,562.3

divide the index total by the total "standard" population and multiply that result by 100,000.

(Total expected deaths / Total "standard" population) x 100,000.

From the table before, we would compute the age-adjusted rate by dividing 3,562.3 by 939,651 and then multiplying the result (0.003791) by 100,000.

Hence, the premature mortality rate for "A" County residents under 75 for 2004-2006 was 379.1 per 100,000.

Thank you

Terima Kasih