

Quality Adjustment

20-22 SEPTEMBER 2021

TURKSTAT

Although almost all quality adjustment is made by imputation or by use of overlapping prices, The following methods are also usefull for quality adjustment.

- Imputation (by elem. aggregate index or by other comparable prices/indices)
- Direct comparison (no quality difference)
- Link to show no price change (quality change = price change)
- Overlapping prices (quality diff. = price diff.)
- Monthly re sampling and chaining (MRC)
- Judgemental adjustment (price collectors, experts, etc.)
- Option pricing
- Production cost method
- Hedonic regression
- Imputation

Actually, no single method is appropriate in all cases and under all conditions. A mix of the Methods may be used according to the type of outlet and market conditions.

if quality change is not removed, it will be reflected as a price change

if quality is increasing (decreasing), but not removed from the index, it will overstate (understate) price change

- Sampled products permanently disappear and are replaced
- Attempt to obtain product with the same characteristics so that we can measure pure price change in our price index
- Must make a determination if replacement product has a different level of quality
- If it does, an adjustment in price is needed which reflects the amount of the quality difference

Direct estimation methods

- Price of characteristic can be determined from products already available in the market
- Data collector or analyst knowledge of products
- Information provided by the product's producer
- Hedonic regression models

Indirect estimation methods

- overlap price available
- Imputing the price change using all other varieties in the industry / item index (stratum relative)
- Imputing the price change using only very similar products / varieties within the industry / item index (targeted/class mean)

Hedonic Method;

This method uses a regression model. The model eliminates price differences created by quality changes.

Option Pricing

If the quality change can be defined as an option of a product and the price of the option can be determined then the option price method can be used. For example, we assume that a new car is produced with some new specifications (airbag, cd player etc.). The cost of the new specification (option) is evaluted.

Depending on the case, full or 50% of the option price can be substructed from the collected price.

Example for Indirect QA (Overlap Pricing)

Variety	Price Index Month 1	Average Price in Month 1	Average Price in Month 2	Month 2 Price Relative	Price Index Month 2
Prod 1	125.0	150	160	1.067	133.3
Prod 2	150.0	225	250	1.111	166.7
Prod 3	125.0	140	-	-	
Sub 1		(160)	180	1.125	140.6
All items	132.83			1.10062	146.9

Product 3 is no longer sold; Substitute 1 is the replacement. Index would rise 15%

with no QA
$$[(160 \times 250 \times 180)^{\frac{1}{3}}/(150 \times 225 \times 140)^{\frac{1}{3}}]=1.1517$$

The value of the quality difference is estimated to be 20 in the previous period.

The prices used for computing the index for Month 2 would be 160 and 180.

The price index reflects a pure price change of only 10% (not 15%)

$$\left[(160 \times 250 \times 180)^{\frac{1}{3}} / (150 \times 225 \times 160)^{\frac{1}{3}} = 1.1006. \right]$$

Example for Indirect QA (Overlap Pricing)

Variety	Price Index Month 1		Average Price in Month 2		Index
Prod 1	125.0	150	160	1.067	133.3
Prod 2	150.0	225	250	1.111	166.7
Prod 3	125.0	140	-	-	140.6
Sub 1		160	180	1.125	
All items	132.83			1.102	146.9

Product 3 and Substitute 1 are available in the overlapping period (Month 1).

The price change for Substitute 1 is used in the index for Month 2. The quality difference of 20, observed as the difference in market prices, is excluded and the index increases by 10% (not 15%)

Example for Indirect QA (Overall mean imputation)

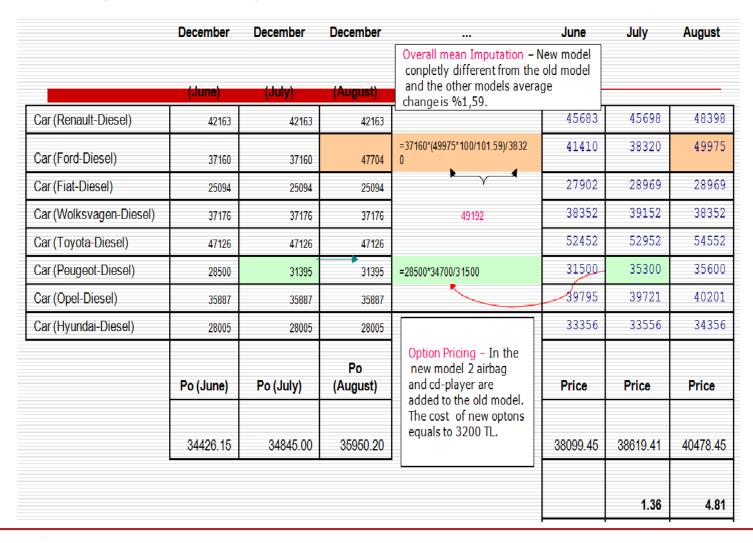
Variety	Price Index Month 1	•	Average Price in Month 2	Price	Index
Prod 1	125.0	150	160	1.067	133.3
Prod 2	150.0	225	250	1.111	166.7
Prod 3	125.0	140	<i>(152)</i>	1.091	136.4
Sub 1		-	180		
All items	132.83			1.089	144.74

No overlap price is available for Substitute 1 in Month 1 An estimate is made for Product 3's price in Month 2 using the average change for other similar products between Month 1 and Month 2 $(160 \times 250)^{\frac{1}{2}}/(150 \times 225)^{\frac{1}{2}} = 1.08867$. The quality difference of 28, observed as the difference between the imputed price of Prod 3 and market price of Sub 1, is excluded and the index increases by about 9% (not 15%)

Example for Indirect QA (Class mean imputation)

Variety	Price Index Month 1	_	Average Price in Month 2	Price	Index
Prod 1	125.0	150	160	1.067	133.3
Prod 2	150.0	225	250	1.111	166.7
Prod 3	125.0	140	<i>(156)</i>	1.111	138.9
Sub 1		-	180		
All items	132.83			1.097	145.71

No overlap price is available for Substitute 1 in Month 1


An estimate is made for Product 3's price in Month 2 using the price trend in a closely related product (Prod 2) between Month 1 and Month 2 (11.1%)

The quality difference of 24, observed as the difference between the imputed price of Prod 3 and market price of Sub 1, is excluded and the index increases by 9.7% (not 15%)

$$[(160 \times 250 \times 156)^{\frac{1}{3}}/(150 \times 225 \times 140)^{\frac{1}{3}} = 1.0971.]$$

Example of Quality Adjustment for Car in Turkish CPI

Example of Quality Adjustment for Notebook in Turkish CPI

			December	December		June	July
			(June)	(July)			
Α	Computer (notebook)	Brand A	2020.42	2020.42		2107.59	2107.59
В	Computer (notebook)	Brand B	1395	1395		1053	1109
С	Computer (notebook)	Brand A	1433.84	1433.84	Class Mean Imputation	1308.99	1337.86
D	Computer (notebook)	Brand A	1527.77	1327	=1527.77*(1556.2*100/ <mark>101.1</mark>)/1771.54	1771.54	1556.2
Е	Computer (notebook)	Brand B	1370.03	1370.03		1132.96	1119.66
F	Computer (notebook)	Brand C	1332.59	1164	=1332.59*(1077.61*100/101.55)/1215.36	1215.36	1077.61
					Overal Mean Imputation		
			Po (June)	Po (July)		Price	Price
			1497.3852	1430.0137		1385.9159	1343.1471
				•			
							-3.09
						Index	Index
						92.56	93.93
						02.00	00.00
							1.40
							1.48

Thank you...