SESRIC – UN-HABITAT Webinar on Measurement Methods for SDG 11 and the New Urban Agenda in the OIC Countries

Overview of Geospatial Data Integration in Urban Monitoring

31st May 2021

Dennis Mwaniki Data and Analytics Unit Knowledge and Innovation Branch UN-HABITAT

Overview

- All indicators in all global and local frameworks are connected to space, but some require direct spatial measurements
- **GA Resolution 68/261** ... calls for data disaggregation by, among others geographic location in accordance with the Fundamental Principles of Official Statistics
- A/RES/71/313 Recommends integration of new data sources into statistical systems for SDGs monitoring (incl geospatial data)

In SDG 11

- Locational attributes affect results in at least 8 indicators 11.1.1, 11.2.1, 11.3.1, 11.5.1, 11.5.2, 11.6.1, 11.6.2, 11.7.1
- At least 3 indicators require direct spatial data, use GIS techniques for measurement 11.2.1, 11.3.1, 11.7.1
- Characteristic specific estimates can be achieved for several other indicators 11.1.1, 11.5.1,

Spatial data and geospatial technologies in SDG 11 are needed to

- Identify/ distinguish urban from non-urban areas
- Extract indicator specific information
- Disaggregate population data

Example 1: Indicator 11.3.1 Computation Workflow

Decide the two years for which the indicator is to be computed – can be 1, 5, 10 year intervals etc

Extract built up areas for each measurement year: (Geospatial Process)

2

Delimit city boundaries for most recent year: (Geospatial Process integrating population data)

4 Compute land consumption rate based on total built up area within boundary for each analysis year (Geospatial Process)

 $LCR(\%) = \frac{Vpresent - Vpast}{Vpast} * \frac{1}{T}$

Vpresent - total built up area in current year Vpast - total built up area in previous year Y - number of years between the two measurement periods

Integrate population for each analysis year (Geospatial + Population/Statistical Processes)

5

Example 2: Indicator 11.7.1 Computation Workflow

1

Identify potential open public spaces and extract information on streets from city land use plans, VHR satellite imagery/ base maps, open sources eg OSM

Undertake validation of identified/mapped potential open public spaces (eg through expert consultations, participatory desktop mapping, ground truthing, etc)

Compute total amount of land occupied by validated open public spaces and streets

2

High resolution population data is needed for 11.7.1

Strong cooperation between NSOs and SDG monitoring/ mapping agencies is required

Estimate population living within the service areas from VHR census data or population grids

Share of the built – up area of the city that is open space in public use (%)

= [$\frac{Total area of Open public space+Total land allocated to streets]}{Total urban area}$

Share of population with access to open public space (%)

 $= \left[\frac{Total \ population \ within \ 400m \ walking \ distance \ to \ OPSs]}{Total \ urban \ population} \right]$

Disaggregate by:

7

- Age
- Gender
- Persons with disabilities

There is a challenge of disaggregating the indicator by different groups where high resolution population data is lacking

Example 3: Indicator 11.2.1 Computation Workflow

1

Collect point data on locations of public transport stops (or routes in cases of informal transport)

- From city authorities, ministries in charge of transport, etc
- Open source platforms e.g OSM, GTFS
- Extraction from satellite imagery
- Detail of data available from open sources varies greatly across cities

In GIS create service area for each public transport stop / route per carrier type threshold

- Access to public transport is measured by delimiting areas within 500 meters walking distance along street network to bus stops, 1000m to high capacity modes
- Include barriers to walking in network service area model
- Service areas for all spaces merged to avoid double counting (GIS network analyst tools)
- Identify barriers to accessing stops egs where streets are not walkable, where pedestrian crossings/ bridges are missing on major highways

Estimate population living within the service areas from VHR census data or population grids

Some emerging challenges and opportunities

Challenges

- Varied capacities technical, infrastructural etc to deal with multiple data needs (city to national level activities)
- Fast rate of geospatial technology change, slow pace of incremental uptake at local level
- Data resolution challenges
 - Resolution of required geospatial data
 - Variations between geospatial and statistical data
- Acceptability & rate of adoption of non-conventional data into mainstream data structures
- Partnerships arrangements and collaborations duplication of efforts

Opportunities

- Reduced costs in production of geospatial data – replicability & repeatability at scale, large coverage with fewer resources
- Ability to collect data in hard-to-reach areas
- Important baseline layers in places with no data – incl improving data resolution
- Active geospatial community (despite competing interests)
- Reporting requirements within SDGs monitoring framework

More information & step by step training modules

Indicator 11.2.1

https://unhabitat.org/sites/default/files/2020/06/indicator 11.2.1 training module public transport system.pdf

Indicator 11.3.1

https://unhabitat.org/sites/default/files/2020/07/indicator 11.3.1 training module land use efficiency french.pdf

Indicator 11.7.1

unhabitat.org/sites/default/files/2020/07/indicator 11.7.1 training module public space.pdf

Other related indicators, tools & datasets

https://unhabitat.org/knowledge/data-and-analytics https://data.unhabitat.org/

THANK YOU!

Dennis.Mwaniki@un.org